
Research Institute for Advanced Computer Science
NASA Ames Research Center

THE PARADIGM COMPILER;
MAPPING A FUNCTIONAL LANGUAGE FOR THE

CONNECTION MACHINE

/ -6o

April, 1989

f

Research Institute for Advanced Computer Science
NASA Ames Research Center

RIACS Technical Report 89.15

NASA Cooperative Agreement Number NCC 2-387

(NASA-CR-188839) THE PARADIGM COMPILER:

MAPPING A FUNCTIONAL LANGUAGE FOR THE

CONNECTION MACHINE (Research Inst. for

Advanced Computer Science) 16 p CSCL

k
L

N92'io29o

09B Unclas
G3/60 0063025

MAPPING

THE PARADIGM COMPILER:

A FUNCTIONAL LANGUAGE FOR THE

CONNECTION MACHINE

JACK B. DENNIS

Research Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field, California 94035. USA

Abstract

The Paradigm Compiler implements a new approach to compiling programs written in
high level languages for execution on highly parallel computers. The general approach is
to identify the principal data structures consu-ucted by the program and to map lhese
strucunes onto the processing elements of the target machine. The mspping is chosen to
maximize perfornumce as detamined through compile time global analysis of the somme
program. In the work reported here, the source language is Sisal, • functional language
designed for scientific computations, and the target language is Paris, the published low-
level interface to the Connection Machine. The data sU'ucturesconsidered sre
multidimensional arrays whose dimensions are known at compile time. Computations that
build such arrays mnudly offer opportunities for highly parallel execution; they are da_
parallel. The Connection Machine is an atu-active targetfor these computations, and the
parallel fo_ consm_ of the Sisal Language is • cnnven/ent high level notation for data
parallel algorkhnw. The paper discusses the principles and organization of the Paradigm
compiler.

Keywords: Connection Machine, Functional Programming, Sisal, Compiler, Mapping

Data S_

Introduction

The advent of highly parallel computers presents new challenges for the designers of

compilers to support high performance scientific computation. Current programming

methodology forparallelcomputers usuallyrequiresthe explicituse ofmessage-passing

commands or othersynchronizingcommands by the authorof the high levellanguage

program. This methodology yieldssource programs thatare needlesslylarge,often
involvemuch overhead intheirexecution,and arerelativelydifficulttomake correctand

maintain.An importantgoaltowardmaking parallelcomputers more useableforpractical

computations is to provide compiling technology that isable to convertalgorithms

expresseddirectlyand simplyina high levellanguageintoefficientprograms forparallel

computers. The parallelism is impficit in the expression of the algorithm and must be
identif'u_dand exploited by the compiler.

The Paradigm Compiler implements a new approach to compiling programs for
highly parallel computers. Its operation is based on identifying the principal data
structures constructed in the course of a computation through global compile-time
anzlysis, and mapping these slructures onto the processing elements of the target
machine 1,2. For the work reported here the source language is Sisal 3, a functional

programming language designed for scientific computation, and the target language is
Paris, the published low-level interface to the Connection Machine 4.

The Sisal language and the Connection Machine5, 6 form a particularly attractive

combination for evaluating this approach. The absense of global variables and the clear
differentiation of arguments and results of function modules make it easy for a compiler
to analyze source programs and identify the pans of the code that define the major data
structures of the computation. We call these pans of the source language program code
blocks.

The data structures appropriate for scienfif'¢ computaion on the Connection Machine

are large multi-dimensional arrays of numerical data. Each code block of a Sisal Program
represents a computation that may be spread over the _sing elements of the machine
according to a chosen assignment (or mapping) of data structure elements to processing
elements of the Connection Machine. This is the essence of data parallel computation 7,8.

The parallel fo_: expression of the Sisal language provides a convenient high level
notation for writing data parallel algorithms.

The Paradigm compiler will compile programs written in the Sisal functional
programming language into the Paris code for the Connection Machine. Because the
parallel £or construct of Sisal is a natural match to the capabilities of the Connection
Machine. the design Of the Paradigm Compiler emphasizes efficient treatment of nested
parallel fo_: expressions in Sisal programs. This report presents an overview of the
Paradigm Compiler.

Our goal and approach require some departure from usual practice in the structure of
programming language support systems. Efficient machine code programs can be
generated only ff the compiler is able to consider the entire collection of program modules
involved in a job in making decisions regarding how the computation should be mapped
onto the target machine. This implies that the linking of program modules should be

accomplished prior to the compiler's analysis and optimization decisions. A second
change is more fundamental: instead of carrying out optimization as a sequence of
independent steps, each of which supposedly leads to an "improvement" of the code, we
perform an analysis of the given code, determine the best mapping strategy, then
synthesize machine code according to the specified mapping.

Our interest in basing code synthesis on the data structures of the computation is

reinforced by the experience of users of hypercube muldprocessors. Many papers have
now been published in which users of large-scale multiprocessor computers have
successfully exploited parallefism through manual analysis of the data structures involved
in a computation 9. Our long term goal is to automate this process and to incorporate iz

into compilers for parallel computers. The reported work even suggests that such
nonnumeric computations as combinatorial search problems can be handled efficiently by

certain paradigms of parallel processing 10. Eventually it may be possible for an

intelligentcompilertorecognizethesepatternsand constructefficientmachine code.

1. The Source Language

For the Paradigm Project the source language is Sisal, a functional programming

language developed at the Lawrence Livermore Laboratory for use in high performance

scientific appficafions 3. The design of Sisal derives from the functional language Val

develot_l 1 by the Computation Strucua'es Group of the MIT Laboratory for Computer
Science . A Sisal compiler has been developed at the Livermore Laboratory which

converts programs into an intermediate form called IF112. This compiler serves as the

front end for the Paradigm Compiler.
Functional programming languages are attractive for parallel programming for two

main reasons: First, the parallelism is implicit, eliminating any need for process

sychronizing facilities, and providing a guarantee of determinate execution. This makes
programs writteninfunctionallanguagesmore compact thanparallelprograms writtenin

conventionallanguageswithfeaturesforexplicitparallelprogramming. Second,compile

time analysisof functionallanguage programs iseasierthanforconventionallanguages

because there are no side effects: each use of any data definition is readily identified.

The parallel fez expression. The most important feature of Sisal for expressing

data parallel computation is the parallel for cxwession. This form may be used to
define an array value of arbitrary rank. For example, the following expression defines a

vector value 7,, each element of which is the average of the two adjacent elements of a

given vectoe X.

Z: azray [zeal] :-
£oz i in 1, n

if i -lli - n

then X[i]

else 0.5 * (X[i-l]

end if

azzay of Y

+ X[i÷l])

In this example the index variable i is specified to range over the domain [1, n].

The expression as a whole defines a one-dimensional array having an element for each
value of the the index i. The body is a conditional expression having two arms, one that

gives the end elements (boundary conditions) and one that gives the rule for computing
the internal elements.

Nested parallel for expressions may be used to define arrays of two dimensions

(matrices) or higher. Our experience with typical programs for large-scale scientific

computation indicates that most loops in these programs can easily be expressed as

parallel re," expressions in Sisal. The Paradigm Compiler is designed to construct

efficient Connection _ _ f_rom array def'udtons (code b]_) written as parallel

foz expressions.

Source language limitations. A typical numerical computation consists of a main

loop, the body of which includes sevexal code blocks that define array values. The code

blocks form an acyclic graph in which each link represents a producer/consumer

relationship for may values passed between two code blocks. This observation sugges_
the following strategy for the initial version of the Paradigm Compiler:. efficient Paris

code will be constructed for Sisal programs that conform to the following genera]

structure. All (multidimensional) array values are def'med by nested parallel £oz

expressions; these parallel _og code blocks may occur within an outer program santctm'e
composed of arbitrary conditional and iteration expressions. However, the program may

not contain any array def'mitions other than the parallel for expressions. In particular,
Sisal iterations of the form

fOE knit

• • . •

retuEns value
¢tnd fog

Of e**

may be used, but those with arzay of instead of value 0 4, may not be used.
The array t'dl operation

azEay fill (a, b, v)

is treated as a short hand notation for

fog i in a, b

Eetuz_8 aggay o£ v
and foe

The following features of Sisal are not supported:

I. Records and Susans: These types are not essential to numerical computation. We

expect that a future version of the compiler will support Sisal records, but the

extension to stream types is not envisioned at present.

2. Complex numbers: The Sisal front end converts the complex data type into a

record type in IF1, which is not supported by Version I of Paradigm. Users should

represent complex numbers by two-element arrays.

3. Arrays: The only array constructor supported is the parallel for expression.

Other operations of Sisal that define new array values (the Replace and Catenate

operations, and operations array_adjust, array_addh, array_addl,

array_remh, add array_reml) arenot supported.The cUmen_oNs ofaways (the

index ranges of parallel for expressions) must be known at compile time (but may
be defined after module linking).

4. Parallel for expression: Only the cross product form of the parallel for

expression is supported, not the dot product form. Each parallel for expression
must have just one result value. The concatenate reduction opeator is not supported.

5. Union Types: Union types and the case expression are not supported in Version 1
of Paradigm.

6. Basic data types: The types null and character are not supported.

7. Function Application: All function definitions for a computation job must be in a
single source program fde. Recursive application of functions is not supported.

The bodies of the parallel for code blocks will be executed on the CM virtual
processors. The initial version of Paradigm will not support array definitions within the
bodies of these code blocks. We hope to remove this restriction in later versions of the
compiler.

2. Structure of the Paris Code

The output of the Paradigm Compiler is a text file of C language code with embeded
Connection Machine (CM) insu'uctions in the form of Paris macro invocations. All
source code outside the parallel for code blocks is converted into normal C language
code. Variables and intermediate values defined by operations within the bodies of parallel
for code blocks are represented by CM variables allocated in a virual processor set
appropriate to the index domain of the code block in which they occur. The bodies of
parallel for code blocks are implemented on the virtual processors.

Static allocation of CM memory is used in Version 1 of the Paradigm Compiler.
This means that all CM variables for all parallel for cod e blocks of the computaton are
allocated to CM memory locations at the begining of program execution, and the
allocation is luted throughout program execution. A future version of Paradigm will
utilize the dynamic memory allocation facilities provide by the Paris interface.

The slructure of the Paris code generated by the Paradigm Compiler is determined
once mappings of arrays defined by parallel code blocks have been fixed. For each array,
most attributes of the mapping are determined by the rank and index ranges of the
corresponding Sisal parallel for expression. In particular the rank of the CM geometry
is fixed and the number of address bits assigned to each axis is determined by the specified
subscript ranges. This fixes the size of the virtual processor set. The remaining
information required to determine a geometry is the assignment of coordinate address bits
to CM "send address" bits, that is, the bit masks for each axis. The choice of this
assignment will have a significant effect on performance in many cases. In addition, the
choice of offset value (difference) between a Sisal subscript value and the corresponding

CM coordinate index may influence performance significantly. The choice of these
attributes of data structure mapping is not made by the Paradigm Compiler but is left to
the user. The Specify Mapping module provides the user with means to indicate these
choices to the compiler. We hope to automate this process in the future.

It is intendedthatthecompiler choose the best Paris implementation of references to
array variables possible. The CM send_to_news and get_from_news ins_'uCtiOns
are used to implement these references whenever arrary element selections have the form
[i + a] where i is a subscripi variable of a paralie! fo= expression and a is a

constant There are two cases depending on whether the a is known at compile time or is
fLxed only immediately prior to execution of the nested parallel £o= expression. In the
first case the compiler can determine the ner_ssary sequence of CM_news instructions
before program execution. In the second case, Paradigm must produce C code that selects
the appropriate CM...news instructions during program exectution. This will probably
result in slower execution due to host computer speed limitations. For other forms of
array element selection, the compiler will generate appropriate CM_get instructions to
implement communication using the general router.

In the case of Sisal parallel for expressions that specify reduction operators
Paradigm generates the result array using appropriate CM scan instructions, or
CM_global reduce operations if the result is a single value. If an argument array of a
parllel for is of lower dimension that the defined array, then CM multi_spread
instructions are used to broadcast elements of the argument array to the virtual processor

where they are used.

3. Structure of the Compiler

The top level structure of the compiler is shown in Fig. 1. The Front End performs
syntax analysis and does static semantic checks on the Sisal function definitions in a
source language file. It converts the definitions into dataflow graphs and creates data
structures in the Program Description Tree (PDT) format to represent the hierarchy of
dataflow graphs for the constituent expressions of Sisal function definitions. The
Transform module of the compiler recognizes nests of parallel fo= expressions and
expresses them as partition conswacts in the PDT formal The Specify Mapping module
of the compiler interacts with the user to create complete mapping specifications for the
output army of each code block. The Code Constructor produces the Paris f'fle from the
PDT based on the mapping specifications supplied by the user. A Print PDT program is
provided for examining programs in the PDT representation. An Analyze module is
planned that will provide the user with information about the program to help with
making the best choice of mapping. This information includes attributes of code blocks
such as operation counts and critical path lengths. The Evaluate module will use the
mapping specifications and the measures provided by the Analyze module to calculate an
estimate of the running time of the job on the Connection Machine.

4. The Program Description Tree Format

The principal data structure used is the Program Description Tree ('PDT), which is
designed to serve the needs of the several parts of the compiler. The front end modules use
the PDT as a common format for program modules processed and linked by the compiler.
Not all components of the PDT data structure are used in all phases of the compilation
process. By accepting this, the input and output of the Transform module can share one
representation, leading to a degree of simplicity.

6

Sisal

Front

End

PDT

--_ Print PDT _}-

__ Transform___

PDT

Mapping

Specifier

Analyze

Paris Code

Constructor

Evaluate I

Paris

Figure 1. Top level structureof theParadigmCompiler.

In the PDT format the several major constructs of the Sisal language are represented

using graphs for their components. For example, the familiar if .. then ..

eZse .. endif form is represented using two graphs, one for each alternative. At
the outer level the PDT is a tree because its constituent graphs form a hierarchy. Nodes of

the graphs represent both simple nodes and compound nodes. The compound nodes refer
to PDT structures that represent major constructs such as conditional expressions,

function applications or parallel for expressions.

To illusmate the PDT format let us consider how dataflow graphs are represented. The

PDT for a graph is a data structure with its root being of thc structure type

struct PD_Graph

{

int node_cnt;

int in cnt;
m

int out cnt;

int *out_see_node;

int *out_see_port;

struct PD Vertex **vertex;

The graph as a whole contains a number of nodes given by node_cnt, and has in cnt

input ports and out_cnt output ports. As we shall see, each node of the graph may
have any number of input and output ports. Connections in the graph are specified by
giving the source of the link that terminates on each output pen of the graph, and each
input pon of each node of the graph. The connections to the output ports of the graph are
specified by the two tables of integers included in the PD_Graph structure as fields
out_see_node and out_s ce_port.

The vertex field of the root structure points to a table of PD_Vertex structares

that represent the nodes of the graph:

struct PD Vertex

{

enum PD_NodeKindTag kind;

enum PD_Opcode opcode;

union PD NodeKind node;

}

The kind field distinguishes unary operators, binary operators, literal nodes, and
compound nodes, and the various types of operators are further distinguished by the
opcode field. The first two kinds of nodes represent most of the simple operators of the

Sisal language. For compound nodes the node field refers to a structure:

struct PD_CompNode

{
int in. cnt;

int out cnt;

int *in sce node;
m

int *out_sce_node;

union PD_CompBody body

This gives the counts of input and output ports of the compound node and specifies the

8

I

sources of its input links. The body field points to one of the sevvral possible compound
node types, for example

struct PD Forall

l
int low;

int high;

enumPD_RedOp reduce;

struct PD_Graph *body

l

This structure represents a parallel for expression in Sisal that defines a one-

dimensional array. Parallel for expressions def'mingarrays of higher rank are represented
as nests of compound nodes. Fields low and high of this structure specify which input
ports of the compound node receive the start and finish values that define the index range
The reduce field specifies the reduction operator to be used if the programmer has specified
value of in the returns clause of the Sisal parallel for expression. The body field
points to the PD_Graph structure that represents the body expression of the parallel
for.

An important operation done by the Transform module of the compiler is to
recognize nests of PD_Zorall structures and reformulate them as partition nodes:

struct PD Partition

l

int dim_cnt;

struct PD_ParamExp *low;

struct PD_ParamExp *high;

enum PD_RedOp *reduce;

int arm_cnt;

struct PD_ArmSpec **arms

}

In this structure, the dim cnt field gives the depth of the nest of PD Forall
nodes from which it was formed. In the absence of reduction operators this is the rank of
the array defined by the represented code block. The low and high fields point to
structures that specify how the index ranges depend on input parameters of the complete
Sisal program. The values of these expressions must be known before mapping choices
are made. Futher aspects of partitionnodes and the Transform module are discussed below.

In the Paradigm Compiler, a PDT presented to the Paris Code Generator will contain
PD Partition nodes, but no PD Forall nodes.

5. The Sisal Front End

The components of the Sisal Front End are shown in Fig. 2. This arrangement has
been chosen to make use of the Sisal parser/checker developed at the Lawrence Livetmore
Laboratory which translates source language programs into the IFI intermediate format 12.
This compiler performs the parsing and compile time semantic checks, so its WI output
fde is free of syntactic errors and is type-correct. An _1 fde is loaded and formatted as a
PDT structure by programs Load IP1 and Convert. The issues in the design of these
programs concern the intricacies of the IF1 format For example, the numbers of nodes

and edges in a dataflow graph are not given explicitly in IF1, so these parameters must be
determined for each graph by counting items in the input fde before storage can be
allocated for the tables used in the PDT format. The Load IF1 program is based on a
version written by the dataflow research group at McGill University 13.

The Link module shown in Fig. 1 provides for combining Sisal function clef'tuitions
contained in severa/separate files. Implementation of the linker requires routines that
merge the data type definitions contained in the separate IF1 files produced by the Sisal
Parser.

It is envisioned that future versions of the Paradigm Compiler will use a new
parser/checker that produces the PDT format directly.

"-_1 Sisal

Parser

Sisal IF1

LOadlF1U Convert I
PDT

Link

PDT PDT

Fig=,e 2. Smacnae of Ihe SissJFromEnd.

6. The Transform Module

In addidon to combining nested PD...Forall nodes, the Transform module puts the
body of the code block into a form better suited to the generation of efficient machine
code for the Connection Machine or other highly parallel computers. Two transformations
are performed where possible: Firstly, array element selection operations are separated
from the arithmetic operations of the code block body. This permits the generation of
code to access nonlocal data with knowledge of all access requirements of the code block.

10

Secondly, conditional expressions in the code block body are identified that perform
simple tests on the index variables of the constituent PV Forall constructs. If these

tests define simple subarrays of the array defined by the code block, more efficient
machine code is possible than a direct coding of the conditional expressions. Specifically,
if such conditional expressions define rectangular subarrays, then the body of the node is
represented by a set of PD_ArmSpec slIuc_lres, each of which contains the PDT of the

code to be executed for the union of a set of specified subarrays. The corresponding code
for the Connection Machine will set the context flag for each arm by executing a series of
testson coordinatevalues in thecodeblockgeometry.

7. The Specify Mapping Module

The Specify Mapping compiler module interacts with a user to complete the
definition of the mappings to virtual processors for each array defined by a code block of
the program. (Note that mappings for any array-valued inputs of the program must also
be completed by the user.) The initial version of Paradigm will be concerned only with
thePD_Partition nodesofthePDT, which correspondtonestsofparallelfor
expressionsintheSisalsourceprogram.Becausewe assumethateacharrayelementwill

be mapped to a uniquevirtualprocessor,the appropriateCM virtualprocessor

configurationisdeterminedby thedimensionsofthearrayvaluedefinedby thecode

block.The rankofthegeometrywillequalthenumberofdimensions(depthofnesting)
of theparallelfor. Sincewe assume thatthe indexlower/upperbounds foreach

dimensionaremanifestthechoicesopentotheuserarethefollowing:

I. Specifiyanoffset(foreachdimension)oftheindexorigintopositiontheindex

rangewithinthe2n lengthoftheCM coordinateaxis(wheren isthesmallest

integer such that 2n is at least as great as the index range).

2. Specify the "mask" for each axis that selectsthe virtual hypercube address bits
to be used for accessing array elements in the corresponding dimension. These
choices for the various code blocks will determine the consistency (or
inconsistency) of the mappings for different code blocks, and hence thc
efficiency of communication that is possible. The mask bits must be mutually
exclusive, and will usually account for all bits in the send address format for the
code block's virtual processor configuration.

Another function of the Mapping Specifier program is to set the values of any job
parameters that are undetermined in the outermost function definition of the PDT.

II

Make
Paris

hEWS

Routing

PG

Allocate

PG_ Print
Paris
Graph

Paris

Paris

Figure3.Sm=ct=reofd_eP=._CodeConstructor.

8. The Paris Code Constructor

The organization of the Paris Code Constructor is shown in figure three. These
compiler modules start with a PDT and produce an ASCII t'de containing Paris macros
embedded in C code for processing by the Connection Machine host computer. These
modules are described in the following paragraphs. First we introduce the Paris Graph
structure used by the code consm_tor.

The Paris Graph. The principal data structures used by the modules of the Paris Code
Constructor are the PDT, and the Paris Graph (PG). The PG format is used to represent
the instructions of the target Paris progrmn, initially without commitment regarding

storage allocation or sequencing. The format of a PG is similar to that used for dataflow
graphs within a PDT. In the PG format, links represent data dependencies through the
source/destination fields of Paris instructions.

For at least two reasons the Paris insuuctions are represented as values of an "enum"
type rather than the character strings that will appear in the Paris output t'de: (1) Parts of
the Code Constructor need to test for specific Paris instructions, which is most efficiently

done by comparing integers; and (2) The character strings can be put in one memory area,
which will lessen their impact on paging performance during compiler execution. The
instruction names (codes) in the PG are "generic" names without the type-indicating

prefixes or the postfix codes that indicate numbers of source/dest fields and field length
specifiers. These are appended to the instruction names by the Expand Paris module.

12

TheMakeParisGraphModule.ThePG Graph datastructure is a hierarchical
graph su'ocmre in which the root node is always associated with a PD_Partition code
block of the PDT. The Paris Graph styucture has as many root nodes as there are pan/don
nodes in the description tree. The outer code (that not contained within any partition node)
is represented in the Paris Graph structure by the corresponding pans of the PDT. The
Paris Graph for a partition node contains Paris communication instructions generated
from the specified array element selections, and Paris instractions for the PDT of each
ann of the partition node. Information about the virtual processor set, geometries, and
parallel variables for the partition code block ate recorded in the Paris Graph format for
use by the Allocate and Expand Paris modules of the Code Consm, ctor. Make Paris
Graph operates by making a traverse of the PDT, generating the Paris Graph for each
partition node. To construct the nesessary CM_get inslructions, the program determines
the origin of each input array value of the code block and consuls its mapping
specifications. Connection Machine spread instructions are placed in the Paris Graph to
implement broadcast requirements, and Connection Machine scan instructions are used to
implement reduction operators specified in the PDT. Make Paris Graph translates the
opcodes in the PDT format into coded Paris operation codes. This translation also
provides type and size information for inclusion in the instruction nodes of the Paris
Graph.

This program must be able to generate code for partition bodies that contain
conditionals or loops (sequential or parallel). Conditionals will be supported in the initial
version; code generation for inner loops will be implemented later.

NEWS Routing Module. This module is used by Make Paris to generate Paris
communication instructions that implement efficient communication among CM virtual
processors using the hypercube geometry of the Connection Machine. As of this report,
the principles of operation for this module have been developed, but work on its
implementation has not begun. The recent work of Levit[14] provides a basis for
choosing optimal Paris code for the partition nodes of programs in PDT format.

Print Paris Graph. This program provides a listing of the hierarchical Paris Graph for
testing purposes.

Paris Allocator. This program performs two functions: (1) Generate the Paris
instructions required to allocate fields for all sources and destinations of instructions in the
given Paris Graph; and (2) Place the instructions in a suitable order. (The order of
instructions in the Paris code matters only if compact allocation is performed. An
exception to this occurs with some Paris instructions for which non-overwriting forms
are not provided.) This function is done by constructing tables of host and CM variables
that are used by Expand Paris to generate variable nanes, C language declarations, and
allocation statements for the C compiler of the Paris file.

13

Expand Paris. _ program gen_'a_ an ASSCI l'fie of Paris c_xie from the al]ocawxl

hierarchical Paris Graph. The principal operations are: (I) generate the C language code
and Paris instructions that set up virus/processor seus and geometries, set up host
computer variables, and provide for transmission of arguments and results of the Sisal
program; (2) generate C code for the outer portion of the job (the portion of the
PG Graph d_ refers m PDT parts); and (3) n-ansla_ insu-uction nodes of the Paris graph
into their character suing values.

Acknowledgements

Sisal is a functional programming language developed at the Lawrence Livermore
Laboratory for use in high performance scientific applications 3. We appreciate the

availability of the Sisal parser/checker developed by the Livermore group because this has
made our task considerably easier. The initial version of the Paradigm Compiler has been
developed by Jack B. Dennis during his appointment as Visiting Scientist at RIACS from
May 1988 through April 1989. The Load IF1 module of this compiler is based on
software supplied by the damflow research group at McGill University, Montreal 13. The
support of the Defense Advanced Research Projects Agency through the Center for
Advanced Architecture of RIACS is acknowledged with appreciation. The author wishes
to thank Erk:Barszcz fox his suggestions from a careful reading of the paper.

References

1, J.B. Dennis, "Mapping array computations for a dataflow muhiprocessor,"
ProceedingsofMapcon IV:MultiprocessorandArrayProcessorConference,Society

forComputerSimulation,1988,pp 71-76.

2. J.B. Dennis,"DataflowComputation:A Case Study,"Chapter9 of Computer

Architecture:Conceptsand Systems,V. Milutinovic,Ed.,New York: North-
Holland1987.

3. J. McGraw, etal.,"SISAL: Streamsand Iterationin a SingleAssignment
Language,"TechnicalReport M-146,LawrenceLiverrnoreNationalLaboratory,
March 1985.

4. ThinkingMachinesCorporation."TheConnectionMachine System,Volume 11:
ParisReferenceManual,"Cambridge,/HA,June1988.

5. W.D. Hillis,The ConnectionMachine,Cambridge,Massachusetts:MIT Press,
1985.

6. Thinking Machines Corporation, "Connection Machine Model CM-2 Technical
Summary," Cambridge, MA, April 1987.

7. W.D. Hillis, and G. L. Steele, Jr., "Data parallel algorithms," Communications of
the ACM 29, 12 (December 1986), 1170-1183.

8. K. Knobe, J. D. Lukas, and G. L. Steele, Jr., "Massively parallel data

optimization," to be published.

14
/

t

/

9. M. T. Heath, exl., Hypercube Multiprocessors 1987, Philadelphia: Society for
Industrial and Applied Mathematics, 1987.

I0. J.B. Dennis, "Dataflow Computation for Artificial Intelligence," Chapter 14 of
Parallel Processing for Supercomputers and Artificial Intelligence, K. Hwang and D.
DcGroot, Eds., New York=McGraw-Hill, 1989.

11. W.B. Ackcnnan and J. B. Dennis, "Val - A Value-oriented Algorithmic Language:
Preliminary Reference Manual," Technical Report MIT/LCS/TR-218, MIT
Laboratory for Computer Science, Cambridge, MA 02139, 1978.

12. S. Skedzielewski and J. Glauert, "IFI: An Intermediate Form for Applicative

Languages," Technical Report M-170, Lawrence Livermore National Laboratory,
July 1985.

13. W.-K. Wong, IF-1 Parser for HDDG, Technical Note 01, Advanced Computer
Architecture and Program Structure Group, School of Computer Science, McGill
University, Montreal, Canada, June 1988.

14. C. Levit, "Grid Communication on the Connection Machine: Analysis,
Performance, and Improvements," these proceedings.

15

r
/

/
f

